

Land application of sewage sludge in China —history, challenge and policy

Guoren Xu^{1*}
Fenfen Zhu², Renhua Chen², Zhengqin Tian²,
1. University of Chinese Acadamy of Sciences
2. Renmin University of China
xgr099@outlook.com, zhufenfen@ruc.edu.cn

Preliminary development stage

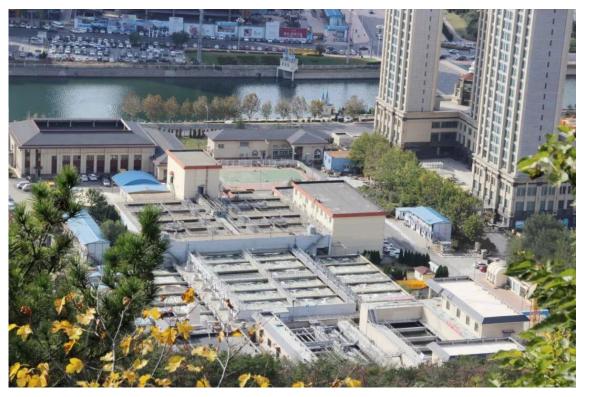
- The first wastewater treatment unit in China was constructed in the Southwest Corner early in 20th century, Tianjin. "Sifangkeng" (Square pit), mainly for rainwater, sedimentation
- The first wastewater treatment plant in China was the North District Plant, built in 1923 on Ouyang Road, Shanghai. Seemly active sludge technology was applied.

Sifangkeng, Tianjin

Early development stage

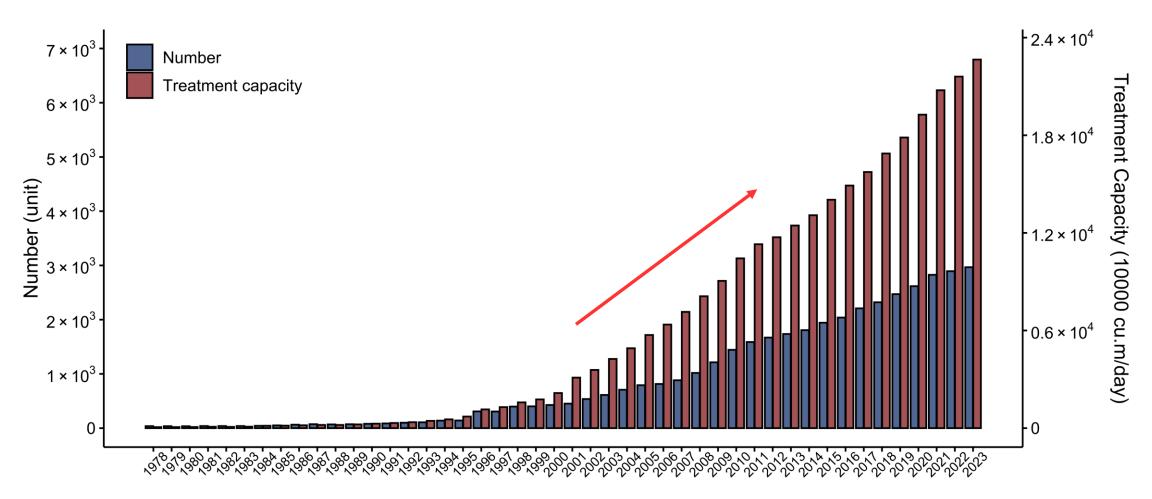
- The Gaobeidian Wastewater Treatment Plant in Beijing was built in 1960.
- China's first large-scale urban wastewater treatment plant, the Jizhuangzi Wastewater Treatment Plant in Tianjin, was put into operation in 1984. 260 kton/d

Gaobeidian, Beijing


Jizhuangzi, Tianjin

Rapid development stage

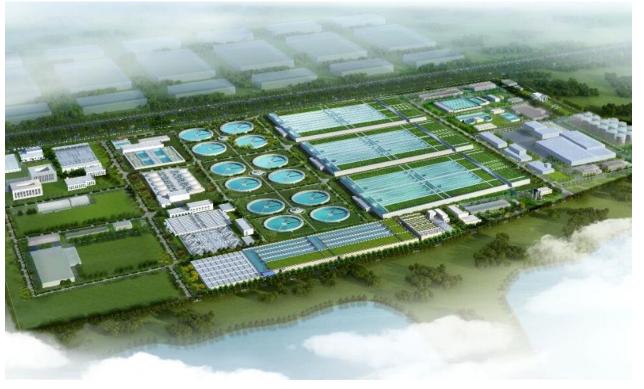
- In 1990, China's first extra-large wastewater treatment plant (Gaobeidian, phase1) officially started to construt.
- In 1993, Gaobeidian wastewater treatment plant was under operation and the quality of effluent is better than National standard.


Gaobeidian, Beijing

Malan River, Dalian

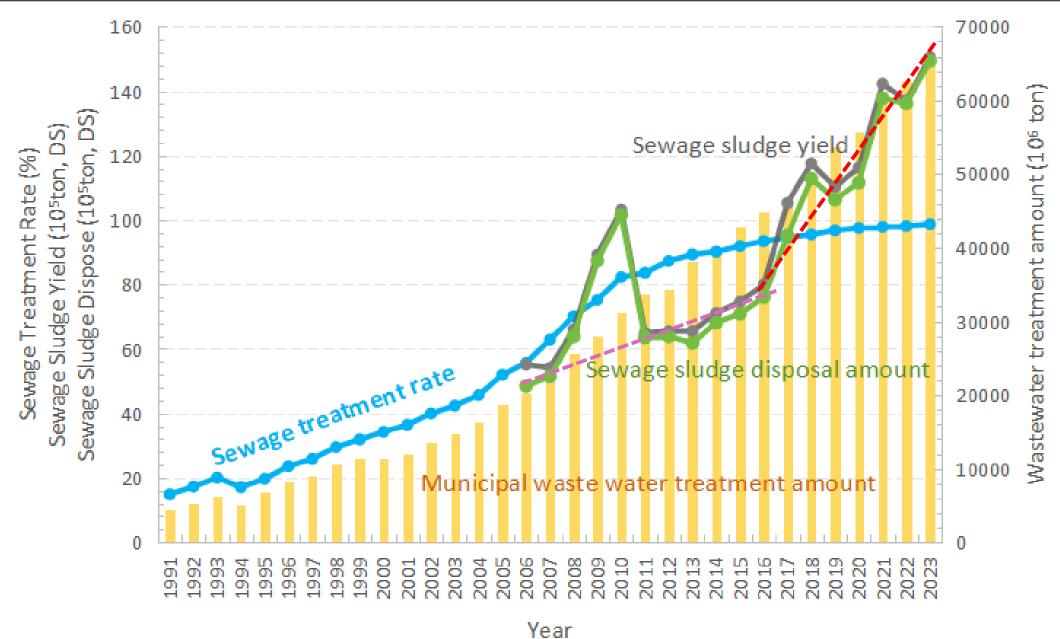
Overall Development Trend

Since 1978, the number of wastewater treatment plants in China and their daily capacity have steadily increased.



Comprehensive development stage

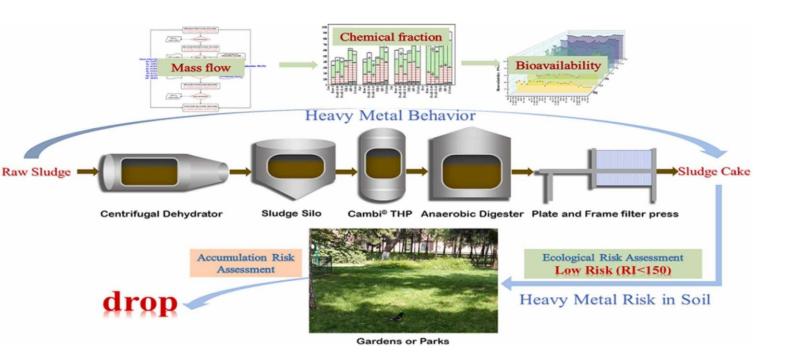
- Wastewater treatment plants in Beijing city started to change to Reclaimed Water Plant, that is they started to build tertiary/ advanced wastewater treatment units, and it was under operation since 2016.
- Not only WWTPs in Beijing, but also Tianjin started to build tertiary/ advanced wastewater treatment units and it was put into operation in 2024.



Gaobeidian, Beijing

Jinnan District, Tianjin

Sewage sludge treatment and disposal


- Former: dehyated to 80% moisture----landfill
- Advanced/ Deep dewatering--landfill;
- Dewatering/ Advanced dewatering--compost--land application, typical area: Tianjin, Shanghai (a period)
- Drying--(Carbonization)---incineration/ fuel in thermal power plant/ cement industry, typical area: Shanghai,
 Shenzhen, Hangzhou, Guangzhou;

Sewage sludge treatment and disposal

- Dewatering/ advanced dewatering--Carbonization--land application/ speical material;
- Thickening and dewatering + thermal hydrolysis + anaerobic digestion + plate and frame dewatering + land application: Beijing City Area, Liangxiang in Fangshan district of Beijing, Nanning in Guangxi, Shenyang,

Liangxiang WWTPs in Fangshan District of Beijing

Current status of applications

20th Zan Tianyou Civil Engineering Award (Second Batch) - Beijing Drainage Group Gao'antun Sludge Treatment & Reclaimed Water Plant

中国土木工程学会文件

中土学〔2024〕3号

关于公布第二十届第二批中国土木工程詹天佑奖 入选工程名单的通知

第二十届第二批中国土木工程詹天佑奖经过遴选推荐、形式审 查、专业组初评、终审会议评审、詹天佑奖指导委员会审核、公示 等评选程序, 共有 45 项各领域的标志性工程入选。现将第二十届第 二批中国土木工程詹天佑奖入选工程名单予以公布。

绿·声音

绿·人物

绿·生活

绿·能源

绿·产业

首页 > 生态 > 资讯

北京排水集团:全力打造碳中和标杆示范水厂

2023年09月08日 16:51 | 来源: 人民政协网

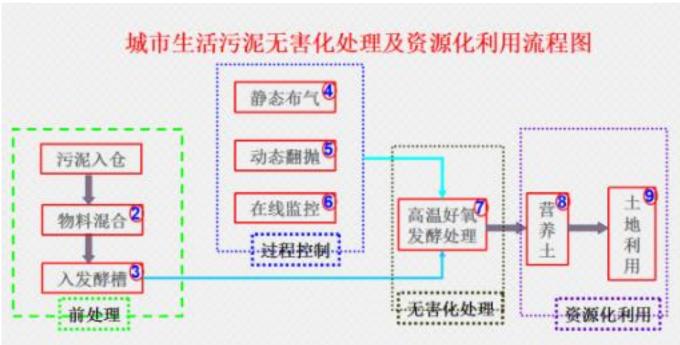
人民政协网北京9月8日电(记者 齐波)近日,记者走进北京排水集团高安屯再生水厂,近距离看到北京排水集团全面系统指 进生产运营低碳建设过程中的突出成果,感受不断追求卓越的精神风貌,以及作为国企提前布局、有序推进碳中和的责任担当。

高安屯再生水厂位于北京市东北部、流域范围北起京顺路、南至姚家园路、西起东五环路、东至温榆河、总流域面积95.7平 方千米。水厂污水处理规模20万立方米/天,污泥处理中心规模1836吨/天,是北京排水集团实施碳中和规划和方案,精心打造的 碳中和标杆示范水厂。2023年2月,高安屯再生水厂碳中和基地项目被确定为北京市首批党建引领新能源领域高质量发展示范基 地。水厂利用再生水回用固碳,实施沼气光伏发电、水源热泵等项目,通过降低物耗、优化工艺、改进设备降碳等一系列措施, 将计划实现电能自给率111%。

采取"三项创新十大措施"促进企业实现碳中和

通过实施"厂网一体化"运营调度、精细化运营管理、工艺设备双协同提质增效、智慧化运营控制系统,北京市中心城区四大 流域水环境彻底改善,水生态得到修复,同时实现节约电能、减少碳排放。

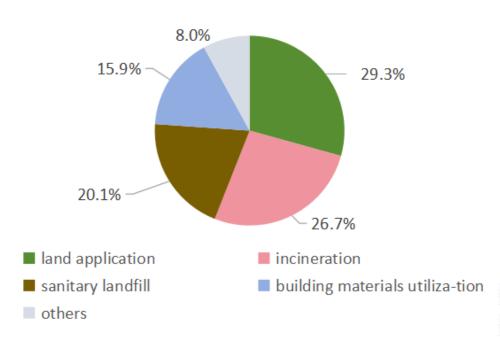
通过技术创新高效开发可再生能源,实现替碳。建设运行全国最大的污泥厌氧消化系统、沼气热电联产中心、再生水源热泵 系统和再生水厂分布式光伏发电工程,深入挖掘污水污泥中的潜在生物质能与热能并合理利用太阳能,替代外部电能。



Current status of applications

Urumqi Tianhengquan Environmental Protection Technology Co., Ltd.-Urban Sewage Sludge Integrated
Treatment and Disposal, 300,000-ton/year Nutrient Substrate Project

2024年示范工程 | 城市污泥综合处理处置 -- 年产30万吨营养基质项目


新疆生态环保产业协会 2025年04月25日 20:59 新疆

Sewage sludge treatment and disposal

数据来源于中国住房和城乡建设部(MOHURD)的官方出版物《中国城乡建设统计年鉴》(2019年)及其内部的统计数据)

《固体废物鉴别标准 通则》中华人民共和国 国家标准 GB 34330-2017 Currently, according to the investigation of Ministry of Housing and Urban-Rural Development of the People's Republic of China, **about 28% sewage sluge were land applied**, about 34% were incinerated, **18% were utilized in building material**, 13% were sent to landfill and the left 8% were disposed by other ways, 2025

- 5 利用和处置过程中的固体废物鉴别
- 5.1 在任何条件下,固体废物按照以下任何一种方式利用或处置时,仍然作为固体废物管理(但包含在
- 6.2条中的除外):
- a)以土壤改良、地块改造、地块修复和其他土地利用方式直接施用于土地或生产施用于土地的物质(包括堆肥),以及生产筑路材料;
 - b) 焚烧处置(包括获取热能的焚烧和垃圾衍生燃料的焚烧),或用于生产燃料,或包含于燃料中;
 - c) 填埋处置:
 - d) 倾倒、堆置:
 - e) 国务院环境保护行政主管部门认定的其他处置方式。

Sludge land application methods

Land application in agriculture (Nearly Zero)

Advantages: provide organic matter and nutrients; reduce chemical fertilizer use; lower agricultural production costs. Disadvantages: contain heavy metals and pathogens; pose food safety and environmental risks; fragmented policy and management.

Land application in forestry

Advantages: increase soil organic matter content; improve forest soil structure and fertility; promote tree growth; enhance understory coverage and biomass.

Disadvantages: high transportation cost; potential heavy metal accumulation in soil; require long-term impact assessment on soil and groundwater.

Land application in landscaping

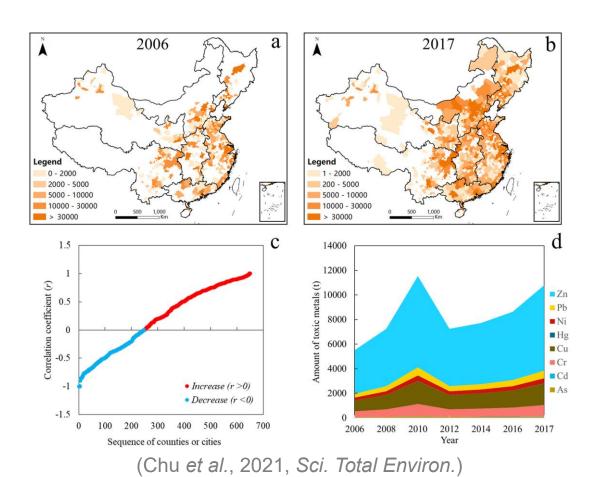
Advantages: enhance the growth of lawns and trees; proximity to urban areas; low transportation cost; avoid food chain entry; reduced pollution risk.

Disadvantages: may alter soil structure; may change soil pH; affects plant growth.

Land application for ecological restoration

Advantages: improve soil physicochemical properties; prevent soil erosion; facilitate rapid vegetation recovery and. microbial reconstruction; capable of handling large quantities of sludge.

Disadvantages: harmful substances may cause secondary pollution; require strict control; application schemes must be adjusted to specific restoration needs.

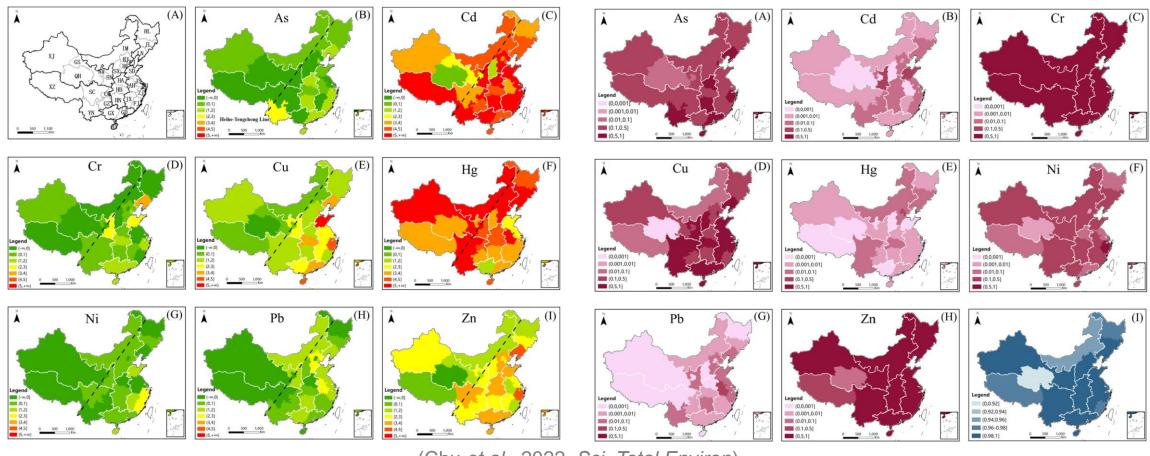


Ecological risks of sludge land application

Heavy metals (HMs)

HMs are the primary limiting factor for the sustainable land application of sewage sludge(Li et al., 2024).

Such as Cu, Zn, Cd, Cr, Pb, Hg, Ni, As.


Ni

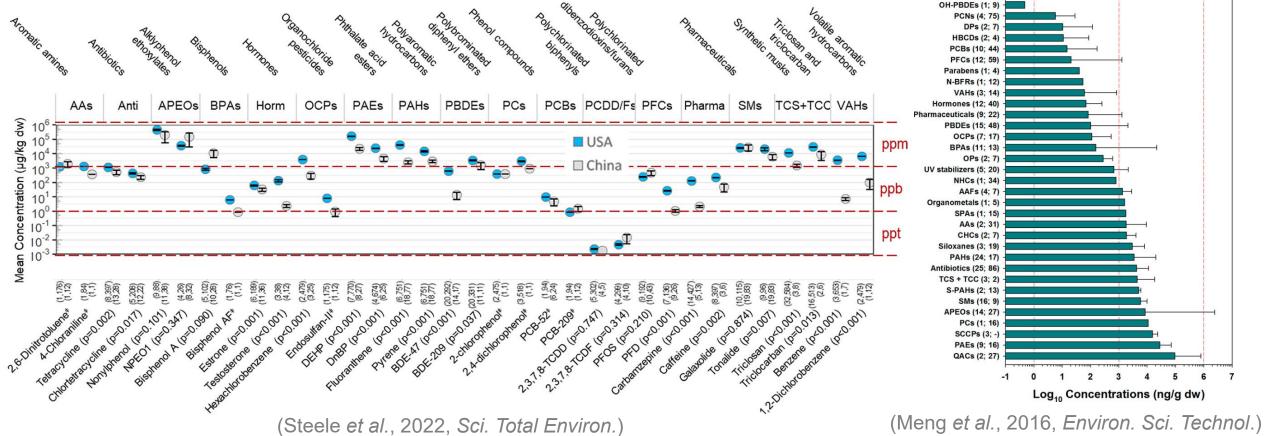
(Li et al., 2024, Environ. Pollut.)

Ecological risks of sludge land application

• Heavy metals (HMs)
Urban sludge land application significantly affects the spatiotemporal distribution of toxic metals in soils(Chu et al., 2024).

(Chu et al., 2022, Sci. Total Environ)

ppm

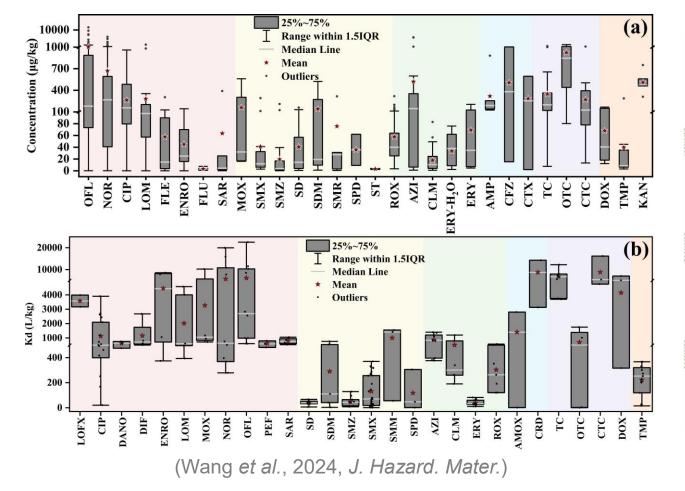

ppb

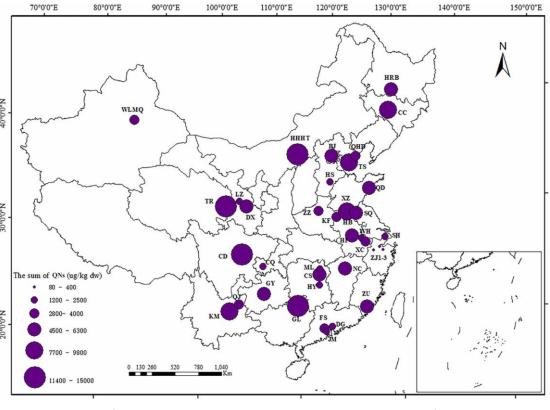
PCDD/Fs (4; 17)

Ecological risks of sludge land application

Emerging Organic Contaminants
 Sewage sludge is both a reservoir and source of OCs in the environment(Meng et al., 20

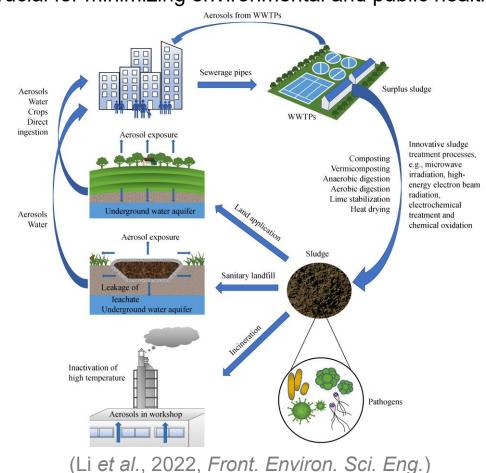
Sewage sludge is both a reservoir and source of OCs in the environment(Meng et al., 2016). Such as PAHs, PCBs, PCDDs, PCDFs.




Most of the Emerging Organic contaminants concentration in USA is higher than those in China

Ecological risks of sludge land application

Antibiotics (ABX)
 Wastewater treatment plants act as primary sinks for ABX from households, hospitals, pharmaceuticals, and livestock.
 Such as quinolones, sulfonamides, macrolides, β-lactams, tetracyclines, and others.



Ecological risks of sludge land application

Pathogenic microorganisms (pathogens)

Sludge contains human and animal feces and serves as a major reservoir of pollutants and pathogens; its proper management is crucial for minimizing environmental and public health risks(Li et al., 2022).

0.10 PCo2 (15.3%) -0.10Spring Summe -0.15Autumn Winter Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan -0.20Actinobacteriota -0.10.1 0.2 0.3 Chloroflexi Acidobacteriota Bacteroidota PCo1 (30.8%) Proteobacteria Myxococcota Brevibacterium Winter Spring Summer Autumn Stenotrophomonas (b) (c) (a) (a) Staphylococcus Relative abundance (%) Escherichia-Shigella Arcobacter Pseudomonas Corynebacterium Aeromonas Legionella Enterococcus Streptococcus Bacillus Leptospira Burkholderia Acinetobacter Mycobacterium Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Clostridium

(B)

0.15

Aug, Sep

(Guruge *et al.*, 2025, *Water Res.*)

Summary

- Sewage sludge application has its advantage and market.
- Sewage sludge contains organic matter, pathogens, and heavy metals, which, if not properly treated, may pose significant risks to environmental safety and public health.
- The treatment of sewage sludge should follow the principles of reduction, stabilization, detoxification, and resource recovery.
- Standards and rules are very necessary to establish.

Current national standards for land application of sewage sludge in China

GB/T 23484-2009

The disposal of sludge from municipal wastewater treatment plant - The classification,

This standard specifies the classification of sludge disposal methods for urban wastewater treatment plants and applies to the construction, operation, and management of related disposal projects.

Effective Date: 2009.12.1

中华人民共和国国家标准

GB/T 23484-2009

城镇污水处理厂污泥处置 分类

Disposal of sludge from municipal wastewater treatment plant-Classification

本标准由中华人民共和 本标准由住房和城乡建 本标准由上海市政工程 起草。

> 本标准主要起草人:张尼 本标准为首次发布

3.2 城镇污水处理厂污泥处置分类见表 1。

城镇污水处理厂污泥处置分类

序号	分 类	范 围	备 注
Call Control Merchanis		园林绿化	城镇绿地系统或郊区林地建造和养护等的基质材料或肥料 原料
1	污泥土地利用	土地改良	盐碱地、沙化地和废弃矿场的土壤改良材料
		农用*	农用肥料或农田土壤改良材料
		单独填埋	在专门填埋污泥的填埋场进行填埋处置
2	污泥填埋	混合填埋	在城市生活垃圾填埋场进行混合填埋(含填埋场覆盖材料利用)
		制水泥	制水泥的部分原料或添加料
3	污泥建筑材料利用	制砖	制砖的部分原料
		制轻质骨料	制轻质骨料(陶粒等)的部分原料
		单独焚烧	在专门污泥焚烧炉焚烧
4	污泥焚烧	与垃圾混合焚烧	与生活垃圾一同焚烧
		污泥燃料利用	在工业焚烧炉或火力发电厂焚烧炉中作燃料利用

Current national standards for land application of sewage sludge in China

• GB/T 23486-2009

The disposal of sludge from municipal wastewater treatment plant - The quality of sludge used in gardens or parks,

This standard specifies the criteria, limits, sampling, and monitoring requirements for sludge from urban wastewater treatment plants used in landscaping, and applies to both its disposal and application.

Effective Date: 2009.12.1

中华人民共和国国家标准 GB/T 23486-2009

GB/T 23486—2009

城镇污水处理厂污泥处置 园林绿化用泥质

Disposal of sludge from municipal wastewater treatment plant— Quality of sludge used in gardens or parks 本标准附录 A 为规范性附录。

本标准由中华人民共和国住房和城乡建设部提出。

本标准由住房和城乡建设部给水排水产品标准化技术委员会归口。

本标准由上海市政工程设计研究总院、上海市园林科学研究所、上海市城市排水有限公司和上海园林(集团)公司负责起草。

本标准主要起草人:张辰、王国华、方海兰、孙晓、陈伟良、徐月江、张琪、吕子文、张善发、曹燕进、 朱广汉。

本标准为首次发布。

4-13 发布 2009-12-0

中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会

表 1 其他理化指标及限值

序号	号 其他理化指标 限值		值
,	рН	酸性土壤(pH<6.5)	中性和碱性土壤(pH≥ 6.5)
1		6.5~8.5	5.5~7.8
2	含水率/%	<40	

4.3.3 污泥园林绿化利用时,其养分指标及限值应满足表2的要求。

表 2 养分指标及限值

序号	养分指标	限值
1	总养分[总氮(以 N 计)+总磷(以 P ₂ O ₅ 计)+总钾(以 K ₂ O 计)](%)	≥3
2	有机物含量/%	≥25

4.4 生物学指标和污染物指标

4.4.1 污泥园林绿化利用与人群接触场合时,其生物学指标及限值应满足表 3 的要求。同时,不得检测出传染性病原菌。

表 3 生物学指标及限值

序号	生物学指标	限值	
1 粪大肠菌群菌值		>0. 01	
2	蠕虫卵死亡率/%	>95	

4.4.2 污泥园林绿化利用时,其污染物指标及限值应满足表 4 的要求。

表 4 污染物指标及限值

		限值	
序号	污染物指标	酸性土壤(pH<6.5)	中性和碱性土壤 (pH≫6.5)
1	总镉(mg/kg 干污泥)	<5	<20
2	总汞(mg/kg 干污泥)	<5	<15
3	总铅(mg/kg 干污泥)	<300	<1 000

表 4 (续)

	污染物指标	限值		
序号		酸性土壤(pH<6.5)	中性和碱性土壤 (pH≫6.5)	
4	总铬(mg/kg 干污泥)	<600	<1 000	
5	总砷(mg/kg 干污泥)	<75	<75	
6	总镍(mg/kg 干污泥)	<100	<200	
7	总锌(mg/kg 干污泥)	<2 000	<4 000	
8	总铜(mg/kg 干污泥)	<800	<1 500	
9	硼(mg/kg 干污泥)	<150	<150	
10	矿物油(mg/kg 干污泥)	<3 000	<3 000	
11	苯并(a)芘(mg/kg 干污泥)	<3	<3	
12	可吸附有机卤化物(AOX)(以 Cl 计)(mg/kg 干污泥)	<500	<500	

benzo pyrene

Current national standards for land application of sewage sludge in China

• GB/T 24600-2009

Disposal of sludge from municipal wastewater treatment plant - Quality of sludge used in land improvement;

This standard specifies the criteria, permissible limits, sampling procedures, and monitoring requirements for the land application of sludge from urban wastewater treatment plants, and is applicable to both sludge disposal and its use for soil amendment.

Effective Date: 2010.6.1

GB/T 24600-2009

ICS 93. 030 P 41

中华人民共和国国家标准

GB/T 24600-2009

城镇污水处理厂污泥处置 土地改良用泥质

城镇污水处理厂污泥处置 土地改良用泥质

Disposal of sludge from municipal wastewater treatment plant— Quality of sludge used in land improvement

1 范围

本标准规定了城镇污水处理厂污泥土地改良利用的泥质指标及限制、取样和监测等。 本标准适用于城镇污水处理厂污泥的处置和污泥土地改良利用。 排水管道通挖污泥用于土地改良的泥质可参照本标准。

2 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

表 1 理化指标及限值

序号	理化指标	限值
1	1 pH 5.5∼10	
2	含水率/%	< 65

4.3.2 污泥土地改良利用时,其养分指标及限值应满足表2的要求。

表 2 养分指标及限值

序号	养分指标	限值
1	总养分[总氮(以 N 计)+总磷(以 P ₂ O ₅ 计)+总钾(以 K ₂ O 计)]/%	≥1
2	有机物含量/%	≥10

4.4 生物学指标和污染物指标

4.4.1 污泥土地改良利用时,其微生物学指标及限值应满足表3的要求。

表 3 生物学指标及限值

序号	微生物学指标	限值
1	粪大肠菌群值	>0.01
2	细菌总数/(MPN/kg 干污泥)	<108
3	蛔虫卵死亡率/%	>95

4.4.2 污泥土地改良利用时,其污染物指标及限值应满足表4的要求。

表 4 污染物指标及限值

单位为毫克每千克干污泥

10

11

12

13

14

		限值	
序号	控污染物指标	酸性土壤 (pH<6.5)	中性和碱性土壤 (pH≥6.5)
1	总镉	5	20
2	总汞	5	15

表 4 (续)

控污染物指标

单位为毫克每千克干污泥

中性和碱性土壤

限值

酸性土壤

	(pH<6.5)	(pH≥6.5)
总铅	300	1 000
总铬	600	1 000
总砷	75	75
总硼	100	150
总铜	800	1 500
总锌	2 000	4 000
总镍	100	200
矿物油	3 000	3 000
可吸附有机卤化物(AOX)(以 Cl 计)	500	500
多氯联苯	0.2	0,2
挥发酚	40	40
总氰化物	10	10

Current national standards for land application of sewage sludge in China

• GB 4284-2018

Control standards of pollutants in sludge for agricultural use,

This standard defines the pollutant control criteria, sampling, testing, and monitoring procedures for sludge from urban wastewater treatment plants for agricultural use, and is applicable to its application on arable land, orchards, and grasslands.

Effective Date: 2019.6.1

GB 4284—2018

中华人民共和国国家标准

GB 4284—2018 代替 GB 4284—1984

农用污泥污染物控制标准

Control standards of pollutants in sludge for agricultural use

2018-05-14 发布

2019-06-01 实施

国家市场监督管理总局 发布 中国国家标准化管理委员会 发布

前 言

本标准按照 GB/T 1.1-2009 给出的规则起草。

本标准代替 GB 4284—1984《农用污泥污染物控制标准》。

。 与 GB|4284-1984 相比,主要技术变化

如下:

- ——修改了适用范围(见第1章);
- 一一增加了规范性引用文件(见第2章);
- ——增加了城镇污水处理厂污泥、农用污泥的定义(见第 3 章);

1984-2018

- ——增加了多环芳烃的限值(见 4.1);
- 一一增加了允许使用污泥产物的农用地类型和规定(见 4.1);
- ——修改了污泥产物的污染物浓度限值(见 4.1,1984 年版的 1.1);
- 一一增加了卫生学指标要求(见 4.2);
- 一一增加了理化指标的要求(见 4.3);
- ——修改了每年每亩的施用量(见 4.4,1984 年版的 2.1);
- ——修改了在同一地块连续使用的年限(见 4.4,1984 年版的 2.1);
- 一一增加了检测分析方法(见第5章);
- 一一增加了监测与取样方法的要求(见第6章)。

本标准由中华人民共和国住房和城乡建设部提出并归口。

本标准负责起草单位:中国科学院地理科学与资源研究所、中国农业科学院农业资源与农业区划研究所、全国污泥处理处置促进会、中国标准化研究院、中国环境科学研究院。

本标准参加起草单位:华南农业大学、中国农业大学、广西大学、西北农林科技大学、西南大学、北京市市政工程设计研究总院有限公司、上海市城市建设设计研究总院(集团)有限公司、北京中科博联环境工程有限公司、北京市环境保护科学研究院、清华大学、哈尔滨工业大学、郑州轻工业学院、桂林理工大学。

本标准主要起草人:陈同斌、郑国砥、张建峰、杨向平、黄进、黄启飞、吴启堂、李季、顾明华、张增强、 陈玉成、李艺、唐建国、彭淑婧、余杰、刘建国、陈志强、马闯、张军、郑海霞、王秀腾。

本标准所代替标准的历次版本发布情况为:

——GB 4284—1984。

表 1 污泥产物的污染物浓度限值

序号	控制项目	污染物限值	
一		A 级污泥产物	B级污泥产物
1	总镉(以干基计)/(mg/kg)	<3	<15
2	总汞(以干基计)/(mg/kg)	<3	<15
3	总铅(以干基计)/(mg/kg)	<300	<1 000
4	总铬(以干基计)/(mg/kg)	<500	<1 000
5	总砷(以干基计)/(mg/kg)	<30	<75
6	总镍(以干基计)/(mg/kg)	<100	<200
7	总锌(以干基计)/(mg/kg)	<1 200	<3 000
8	总铜(以干基计)/(mg/kg)	<500	<1 500
9	矿物油(以干基计)/(mg/kg)	<500	<3 000
10	苯并(a)芘(以干基计)/(mg/kg)	<2	<3
11	多环芳烃(PAHs) (以干基计)/(mg/kg)	<5	<6

表 2 允许使用污泥产物的农用地类型和规定

污泥产物级别	允许使用的农用地类型
A 级	耕地、园地、牧草地
B級	园地、牧草地、不种植食用农作物的耕地

Current local standards for land application of sewage sludge in China

• DB 11_T 2124-2023

Technical specifications for forestland application of sludge products,

This standard provides detailed technical specifications for sludge products in Beijing, including quality requirements, application guidelines, and record-keeping and management procedures for use on forestland.

Effective Date: 2023.10.1

DB11/T 2124-2023

DB11/T 2124-2023

污泥产品林地施用技术规范

Technical specifications for forestland application of sludge products

本文件按照GB/T 1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定 記草

本文件的内容涉及"一种城镇生活污泥产品林地施用土壤淋溶液取样系统"专利(证书编号为 ZL202122199200.2),专利持有人声明放弃因本地方标准实施而产生的与该专利权相关的权利,并已 出具《关于北京市地方标准<污泥产品林地施用技术规范>中专利权的声明》。

本文件由北京市园林绿化局、北京市水务局提出并归口。

本文件由北京市园林绿化局、北京市水务局组织实施。

本文件起草单位:北京林业大学、北京市园林绿化科学研究院、北京市林业工作总站(北京市林 业科技推广站)、北京市生态环境保护科学研究院、北京市大兴区林业工作站、北京市西山试验林 场、北京市丰台区万芳亭公园、北京市朝阳区团结湖公园、北京森源达生态环境股份有限公司。

本文件主要起草人:彭祚登、曹吉鑫、孟丙南、杨宁、张天昱、于凌霄、孙文彦、冯天爽、王书 婷、姚飞、伍红见、王浩、姚聪颖、孙昱、唐胶、陈玲、陈月、焦宇、李香、于海宝、亓学明、贾建 学、钟传季、王迎、胡爽、任晓净、刘术翠、白玉洁、魏雅芬、徐亮、郑哲、张劲、杨子璇、都玉 婷、刘利霞。 引言

为贯彻落实《中华人民共和国森林法》、《中华人民共和国环境保护法》和《中华人民共和国固体废物污染环境防治法》,加强森林质量管理、规范污泥产品林地资源化利用品质和技术方法,防治污泥污染环境,维护生态安全,促进经济社会可持续发展,制定本文件。

本文件的发布机构提请注意,声明符合本文件时,可能涉及到实用新型专利**ZL202122199200.2** "一种城镇生活污泥产品林地施用土壤淋溶取样系统"相关的专利的使用。

本文件的发布机构对于该专利的真实性、有效性和范围无任何立场。

该专利权人已向本文件的发布机构声明,放弃因实施本文件而产生的专利号为**ZL202122199200.2** "一种城镇生活污泥产品林地施用土壤淋溶取样系统"的专利权。该专利权人的声明已在文件的发布机构备案。

该专利持有人相关信息可以通过以下联系方式获得:

专利持有人姓名:北京城市排水集团有限责任公司、北京北排水环境发展有限公司地址:北京市西城区车公庄大街北里乙37号

请注意除上述专利外,本文件的某些内容仍可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

2023-06-25 发布 2023-10-01 实施

北京市市场监督管理局

发布

Abolished local standards for land application of sewage sludge in China

DB5301_T 86-2023

Urban domestic sewage treatment plant sludge Land use sludge Quality Control Specifications;

This document specifies the quality control and testing requirements for sludge from urban domestic wastewater treatment plants for land application.

Effective Date: 2023.6.1-2024.11.30

DB5301/T 86-2023

城镇生活污水处理厂污泥 土地利用污泥 质量控制规范

ICS 13.030.10 CCS Z 68

DB 5301

昆明市地方标准

DB5301/T 86-2023

DB5301/T 86-2023

前言

-按照GB/T 1.1-2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定

城镇生活污水处理厂污泥 土地利用污泥 质量控制规范

Urban domestic sewage treatment plant sludge Land use sludge Quality Control Specifications (本文件的某些内容可能涉及专利,本文件的发布机构不承担识别这些专利的责任。

由昆明市市场监督管理局提出并归口。

起草单位: 昆明滇池水务股份有限责任公司、昆明城市污水处理运营有限责任公司。

主要起草人: 翟明、郭曦滢、翟媛、马方。

1 范围

本文件规定了城镇生活污水处理厂污泥用于土地利用处置的质量控制及检测项目。 本文件适用于对城镇生活污水处理厂污泥土地利用质量的控制。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用面构成本文件必不可少的条款,其中,注日期的引用文件, 仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的惟改单)适用于本文件。

件。
 GB 5009.27 食品中苯并(a) 芘的测定
 GB/T 6679 固体化工产品采样通则

GB 7959 粪便无害化卫生要求 GB 13015 含多氯联苯废物污染控制标准

GB/T 17135 土壤质量 总砷的测定 硼氢化钾-硝酸银分光光度法

GB/T 17136 土壤质量 总汞的测定 冷原子吸收分光光度法

GB/T 17141 土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法

GB/T 22105 土壤质量 总汞、总砷、总铅的测定 原子荧光法

GB/T 23486-2009 城镇污水处理厂污泥处置 园林绿化用泥质

GB/T 31962 污水排入城镇下水道水质标准

CI/T 141 城镇供水水质标准检验方法

CJ/T 221 城市污水处理厂污泥检验方法

LY/T 1251 森林土壤水溶性盐分分析

HJ 491 土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法

HI 680 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解原子荧光法

HI 923 土壤和沉积物 总汞的测定 催化热解-冷原子吸收分光光度法

DB5301/T 41-2019 城镇污水处理厂污泥处置 土地利用技术规范

DB5301/T 48-2020 城镇污水处理厂污泥处理处置规范

3 术语和定义

下列术语和定义适用于本文件。

3.1

城镇生活污水处理厂污泥 sludge from municipal wastewater treatment plant 指城镇生活污水处理厂在污水处理过程中产生的、经过股水后的半固态或固态物质。不包括栅液、 设备的环境。

[来源: GB/T 24188-2009, 3.1,有修改]

Current industry standards for land application of sewage sludge in China

CJ/T 362-2011

Disposal of sludge from municipal wastewater treatment plant— Quality of sludge used in forestland;

This standard specifies the sludge quality, sampling, and monitoring requirements for forestland application of sludge

from urban wastewater treatment plants.

Effective Date: 2011.6.1

Li_

中华人民共和国城镇建设行业标准

CJ/T 362-2011

城镇污水处理厂污泥处置 林地用泥质

Disposal of sludge from municipal wastewater treatment plant— Ouality of sludge used in forestland

2011-02-17 发布

2011-06-01 实施

Summary

- Land application standards and related standards are very important for sludge application.
- With the development of society, standards had better be updated.
- Many researchers in China are working to make sludge land application more safe and wider applied.

The 19th IWA conference on Sludge Management October 21-24, 2025, Kyoto, Japen

Thank you for your attention!

I would like to sincerely acknowledge: