

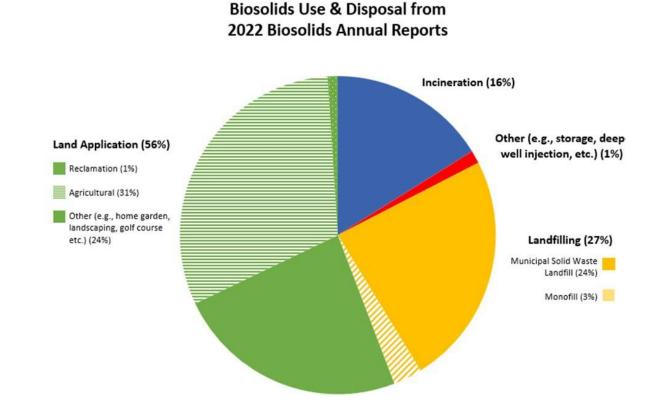
Biosolids Utilization in Agriculture – Decades of Successful Practices in the USA

The 19th IWA Conference on Sludge Management

Kyoto, Japan

K. Richard Tsang, PhD, PE, BCEE Tom Solon, PE A. R. Rubin, PhD

October 21, 2025



- 1. History
- 2. Rules and Regulations are Necessary and Essential
- 3. Sound Agronomic Planning and Practice
- 4. Trained and Competent Operators
- 5. Management and Oversight
- 6. Recent Challenges
- 7. Example Systems

U.S. Biosolids Management Practices

- Since 40 CFR Part 503, EPA has been advocating beneficial uses of biosolids
- Beneficial use of biosolids through land application has been practiced for decades
- Latest data showed 56% of biosolids generated in the U.S. were land applied
- Incineration and landfilling accounts for 43%

Source: EPA 2022 ECHO data

USEPA and Local Regulation

- USEPA: 40 CFR Part 503
 - Established national standards
 - Regulated metals
 - Pathogen control
 - PSPR Site permit protects public health and EQ
 - PFRP Product permit protects public health and EQ
 - Vector control
- State rules reflect 503 requirements and include additional requirements
 - Site, soil, crop management and reporting requirements for PSRP product
 - Site slope and proximity to waterways, wells and property boundaries
 - Soil depth and fertility
 - Nutrient management for specific crop associated with soil resource and location

Essential Components in A Successful Biosolids Beneficial Utilization Effort

Planning

- Product quality
- Site, soil and crop
- Nutrient management

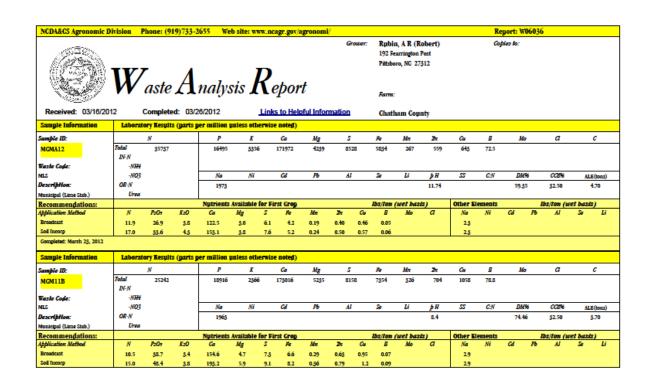
Operation

- Responsible operators
- Compliance monitoring

Management and oversight

- Record keeping
- Reporting

Product Quality Required for Land Application


- PFRP (Class A)
- Few site restrictions
- Nutrient management plan
- No crop limitations
 - Food crops

- PSRP (Class B)
- Site restrictions apply
 - Water table
 - Surface water
 - Drinking water wells
- Nutrient management plan
- Crop limitations

Product Quality – Nutrients and Regulated Constituents

- Nitrogen
- Phosphorus
- Potassium
- Secondary Nutrients
- Regulated constituents
 - Metals
 - Organic compounds

Reprogramming of the laboratory-information-management system that makes this report possible is being funded through a grant from the North Carolina Tobacco Trust Fund Commission.

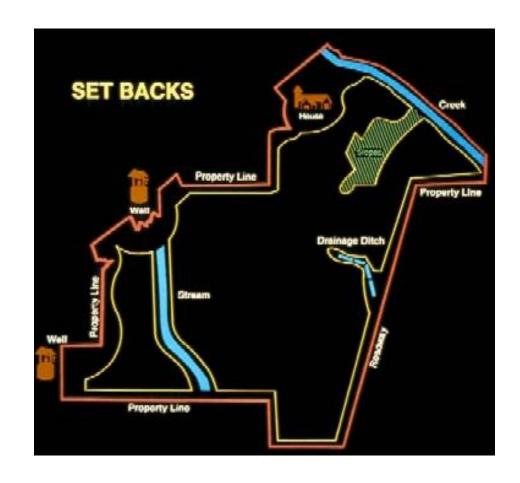
Thank you for using agronomic services to manage nutrients and safeguard environmental quality.

- Steve Troxler, Commissioner of Agriculture

Develop a Comprehensive Nutrient Management Plan

- Smart
- Sound
- Economic
- Aids Compliance
- Reduces nutrient loss
- Prevents crop/soil issues
 - Excesses
 - Deficiencies

Assess Site and Soil Resources


- Are the proposed crops adapted to the soils and climate?
- What is a reasonable expected yield?
- Are site and soil resources appropriate
 - Is slope acceptable
 - Soil depth critical factor
 - Depth to rock and seasonal water table must be assessed
- What do soil fertility test results show?
- What are specific site control measures?
 - Leaching potential
 - Frosion Control

Inches O- Layers dominated by organic A- Mineral horizons forming at the surface or below the O horizon. E- Mineral horizon where there has been a loss of silicate clay, iron or aluminum, leaving a concentration of sand and silt particles. B- Horizons forming below A, E, or O horizon. These horizons are changed from their original rock structure. C- Horizons or layers that are little affected by soil weathering but are not rock. R-Rock that takes more than hand-digging with a spade to dislodge.

Soil Profile characteristics

Develop Site Specific Recommendations

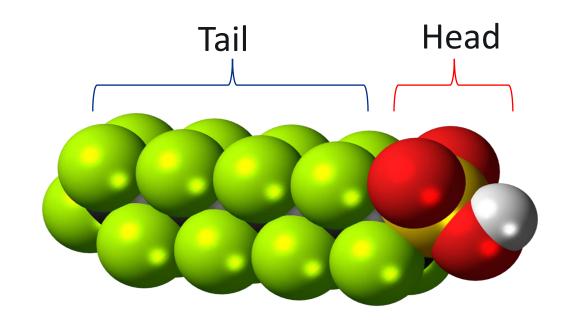
- Crop and soil
 - Determine application rates
- Buffers
 - Adjoining properties
 - Waterways and wells
- Steep slope and erosion control
 - May limit use of portions of site

Operating with Crop Nutrient Management

- The most limiting nutrient will dictate the crop production (yield) and overall plant health
- Soil, waste, and plant tissue sampling are key tools for nutrient management

Monitoring Soil and Crop Resource

- Are the proposed crops responding positively to Biosolids
 - Yield
 - Quality/plant tissue testing
- What do soil test results show?
 - Nutrient or metal level concerns
 - Improved organic matter
- Are specific site control measures effective?
 - Leaching potential
 - Erosion Control


Conclusions

- Beneficial use of Biosolids well documented in U.S and E.U
- Planning, Operation and Monitoring/Management activities are essential
- Farmers and foresters value the benefits achieved with biosolids and biosolid derived products

PFAS & CECs

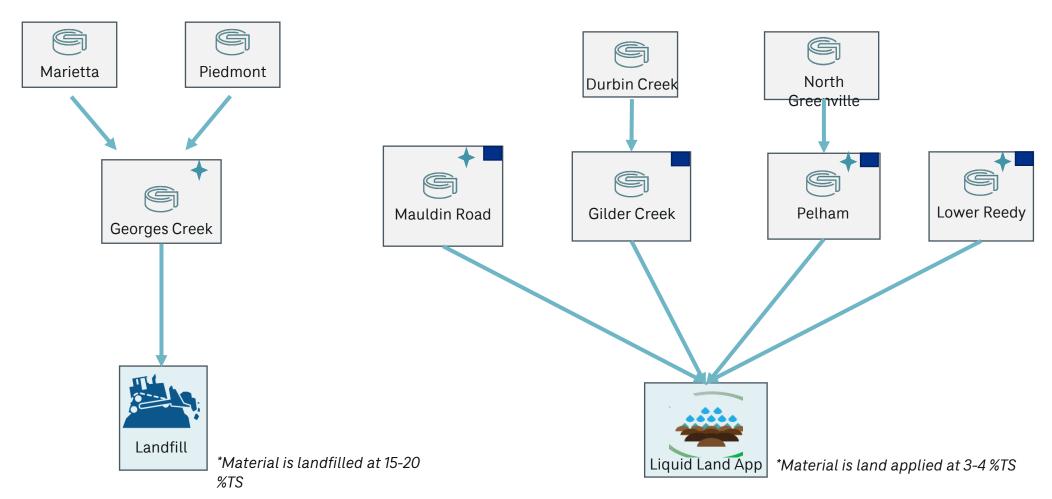
- PFAS concerns have dominated the environmental community in the past few years
- EPA Risk Assessment Draft published
 1/15/2025
- Assessment result does not imply a regulation, limit or risk to the public
- While no federal regulations on PFAS in biosolids, states have chosen to adopt limits/standards

Biosolids Land Application Limits (ng/g)

Chemical Name	TX (proposed)	VT (interim)	MI (interim)	WI (interim)	NYS (interim)	MN (interim)	CT (ban)	ME (ban)	1633A MDL
PFBA	28.80								0.15
PFBS	40.30								0.05
PFPeA	14.40								0.07
PFHxS	0.30	0.38							0.08
PFHxA	9.40								0.06
PFHpA	0.40	0.84							0.05
PFOS	5.10	3.40	20.0	20.0	20.0	19.0			0.07
PFOA	0.90	1.60			20.0	19.0			0.07
PFOSA	2.70								-
PFNA	1.50	0.44							0.14
PFDA	0.80								0.06
PFDS	0.80								0.08
PFUnA	0.80								0.12
PFDoA	0.80								0.06
PFTrDA	0.80								0.07
HFPO-DA (GenX)	0.80								0.25

ReWa Overview

- Renewable Water Resources (ReWa) is a special purpose district in upstate South Carolina
- ReWa owns and operates 9 wastewater recovery facilities (WRRFs) and 88 pump stations
- WRRF size ranges from .07 mgd (264 m3/day) to 16 mgd (60,566 m3/day).
- Permitted for 33,0731 m3/day across all facilities
- Treat on average 148,766 m3/day


WRRF Facility	Treatment Capacity (MGD)	Average Flow (MGD)	Percent Capacity
Durbin Creek	5.2	1.8	35%
George's Creek	3.0	1.2	37%
Gilder Creek	11.3	4.3	38%
Lower Reedy	11.5	6.3	55%
Marietta	0.67	0.23	34%
Mauldin Road	29.0	13.9	48%
North Greenville University	0.2	0.07	35%
Pelham	22.5	10.1	45%
Piedmont Regional	4.0	1.4	35%
Total	87.37	39.30	45%

Phosphorus removal required

Anaerobic digestion

ReWa WRRF Solids Overview

Dewatering capabilitiesAnaerobic digestion

ReWa Solids Handling Data

- 2024 Biosolids Handling:
 - Class B Liquid Land Applied: 6,322.1 metric dry tons
 - 384,049 lbs (174,201 kg) of plant available nitrogen applied
 - 1,091,548 lbs (495,117 kg) of phosphate applied
 - Landfilled: 938 metric dry tons
 - Total: 7,261 metric dry tons with 87% beneficially reused
- Work with third party contractor Denali to manage land application
- Land application sites are permitted through local regulatory body DES
- 12,000 acres (4,856 hectares) of available land app sites with farmers owning the majority

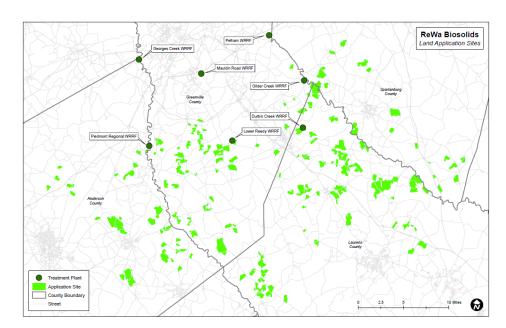
Keys to Success

- Nutrient management plan approved by local regulating body DES
 - Determines field loading rates based on crops and growing field
- Strong relationship with third party contractor Denali
 - Complex management is required during wet season due to field conditions limiting application
- Consistent communication and strong relationship with Farmers
 - Weekly land application audits
 - Yearly farmers dinner

Crop	Advised PAN values	Crop	Advised PAN values
Alfalfa	150 lbs./ac/yr.	Forest	75 lbs/ac/yr
Bermuda Grass	200 lbs/ac/yr	Milo	100 lbs/ac/yr
Blue Grass	120 lbs/ac/yr	Small Grain crops	100 lbs/ac/yr
Corn Grain	160 lbs/ac/yr	Sorghum(Silage)	180 lbs/ac/yr
Corn Silage	180 lbs./ac/yr.	Soybeans	150 lbs/ac/yr
Cotton	70 lbs/ac/yr	Timothy, Orchard Grass	160 lbs/ac/yr
Fescue	160 lbs/as/yr	Rye Grass	160 lbs/ac/yr
Bermuda Hay over seeded	w/ Rye Grass/Small grains	240 lb	s/ac/yr

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Corn												
Wheat, Oats, & Barley												
Grain Sorghum												
Soybeans												
Bermuda												
Fescue												
Rye												
Rye/Bermuda												
Fescue/Bermuda												
Pastures- All Varieties												

Keys to Success


- Nutrient management plan approved by local regulating body DES
 - Determines field loading rates based on crops and growing field
- Strong relationship with third party contractor Denali
 - Complex management is required during wet season due to field conditions limiting application
- Consistent communication and strong relationship with Farmers
 - Weekly land application audits
 - Yearly farmers dinner

Challenges

- Program management
 - Land application is weather dependent
 - Sufficient solids storage for wet weather season
- Growing local economy
 - Longer transport to land application sites
 - Farmers selling land
 - Transport costs
- Regulations
 - Regulatory paperwork
 - Emerging contaminants
- Plan to increase resiliency
 - Transition to land application of dewatered material (20% TS)
 - Reduces liability through lower transport costs and disposal flexibility

Questions

Richard Tsang, PhD, PE, BCEE

Senior Vice President

+1 919.426.4133 | tsangkr@cdmsmith.com

